
Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 1 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Non-proprietary Security Policy for

FIPS 140-2 Validation

Kernel Mode Cryptographic Primitives
Library (cng.sys) in
Microsoft Windows 10
Windows 10 Pro
Windows 10 Enterprise
Windows 10 Enterprise LTSB
Windows 10 Mobile
Windows Server 2016 Standard
Windows Server 2016 Datacenter
Windows Storage Server 2016

DOCUMENT INFORMATION

Version Number 1.4
Updated On August 6, 2019

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 2 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2019 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 3 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

CHANGE HISTORY

Date Version Updated By Change

07 DEC 2016 1.0 Tim Myers First release to validators

13 JAN 2017 1.1 Tim Myers Update based on CMVP comments

28 MAR 2018 1.2 Mike Grimm Update for build 10.0.14393.1770 (1SUB)

23 MAY 2018 1.3 Iffat Qamar Updated Bounded Modules, updated certs

6 AUG 2019 1.4 Garrett Burk Updates in response to comments

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 4 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

1 INTRODUCTION ...8

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES .. 10

1.2 VERSION INFO .. 10

1.3 BRIEF MODULE DESCRIPTION ... 10

1.4 VALIDATED PLATFORMS .. 10

1.5 CRYPTOGRAPHIC BOUNDARY .. 10

2 SECURITY POLICY ... 10

2.1 FIPS 140-2 APPROVED ALGORITHMS .. 13

2.2 NON-APPROVED ALGORITHMS ... 14

2.3 CRYPTOGRAPHIC BYPASS ... 15

2.4 FIPS 140-2 APPROVED ALGORITHMS FROM BOUNDED MODULES ... 15

2.5 MACHINE CONFIGURATIONS.. 15

3 OPERATIONAL ENVIRONMENT... 15

4 INTEGRITY CHAIN OF TRUST .. 15

5 PORTS AND INTERFACES .. 16

5.1 CONTROL INPUT INTERFACE ... 18

5.2 STATUS OUTPUT INTERFACE ... 18

5.3 DATA OUTPUT INTERFACE ... 18

5.4 DATA INPUT INTERFACE .. 18

5.5 NON-SECURITY RELEVANT CONFIGURATION INTERFACES ... 18

6 SPECIFICATION OF ROLES .. 19

6.1 MAINTENANCE ROLES .. 19

6.2 MULTIPLE CONCURRENT INTERACTIVE OPERATORS .. 19

6.3 OPERATOR AUTHENTICATION ... 19

7 SERVICES ... 20

7.1 POWER UP AND POWER DOWN .. 20

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 5 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.1.1 DRIVERENTRY ... 20

7.1.2 DRIVERUNLOAD .. 20

7.2 ALGORITHM PROVIDERS AND PROPERTIES ... 20

7.2.1 BCRYPTOPENALGORITHMPROVIDER ... 20

7.2.2 BCRYPTCLOSEALGORITHMPROVIDER .. 21

7.2.3 BCRYPTSETPROPERTY .. 21

7.2.4 BCRYPTGETPROPERTY .. 21

7.2.5 BCRYPTFREEBUFFER .. 21

7.3 RANDOM NUMBER GENERATION .. 22

7.3.1 BCRYPTGENRANDOM .. 22

7.3.2 SYSTEMPRNG .. 22

7.3.3 ENTROPYREGISTERSOURCE ... 22

7.3.4 ENTROPYUNREGISTERSOURCE ... 23

7.3.5 ENTROPYPROVIDEDATA .. 23

7.3.6 ENTROPYPOOLTRIGGERRESEEDFORIUM .. 23

7.4 KEY AND KEY-PAIR GENERATION ... 23

7.4.1 BCRYPTGENERATESYMMETRICKEY ... 23

7.4.2 BCRYPTGENERATEKEYPAIR ... 24

7.4.3 BCRYPTFINALIZEKEYPAIR .. 24

7.4.4 BCRYPTDUPLICATEKEY ... 24

7.4.5 BCRYPTDESTROYKEY .. 24

7.5 KEY ENTRY AND OUTPUT ... 24

7.5.1 BCRYPTIMPORTKEY ... 24

7.5.2 BCRYPTIMPORTKEYPAIR ... 25

7.5.3 BCRYPTEXPORTKEY ... 26

7.6 ENCRYPTION AND DECRYPTION ... 27

7.6.1 BCRYPTENCRYPT ... 27

7.6.2 BCRYPTDECRYPT ... 28

7.7 HASHING AND MESSAGE AUTHENTICATION ... 30

7.7.1 BCRYPTCREATEHASH ... 30

7.7.2 BCRYPTHASHDATA .. 30

7.7.3 BCRYPTDUPLICATEHASH .. 31

7.7.4 BCRYPTFINISHHASH... 31

7.7.5 BCRYPTDESTROYHASH ... 31

7.7.6 BCRYPTHASH .. 31

7.7.7 BCRYPTCREATEMULTIHASH .. 32

7.7.8 BCRYPTPROCESSMULTIOPERATIONS .. 32

7.8 SIGNING AND VERIFICATION ... 33

7.8.1 BCRYPTSIGNHASH ... 33

7.8.2 BCRYPTVERIFYSIGNATURE .. 34

7.9 SECRET AGREEMENT AND KEY DERIVATION.. 35

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 6 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.9.1 BCRYPTSECRETAGREEMENT .. 35

7.9.2 BCRYPTDERIVEKEY .. 35

7.9.3 BCRYPTDESTROYSECRET ... 36

7.9.4 BCRYPTKEYDERIVATION ... 37

7.9.5 BCRYPTDERIVEKEYPBKDF2 .. 37

7.10 DEPRECATION ... 38

7.10.1 BIT STRENGTHS OF DH AND ECDH... 38

7.10.2 SHA-1 ... 38

7.11 SHOW STATUS SERVICES ... 38

7.12 SELF-TEST SERVICES ... 38

7.13 SERVICE INPUTS / OUTPUTS ... 38

7.14 MAPPING OF SERVICES, ALGORITHMS, AND CRITICAL SECURITY PARAMETERS 39

7.15 MAPPING OF SERVICES, EXPORT FUNCTIONS, AND INVOCATIONS .. 40

7.16 NON-APPROVED SERVICES .. 42

8 AUTHENTICATION ... 43

9 SECURITY RELEVANT DATA ITEMS .. 43

9.1 ACCESS CONTROL POLICY .. 44

9.2 KEY MATERIAL .. 44

9.3 KEY GENERATION .. 45

9.4 KEY ESTABLISHMENT .. 45

9.4.1 NIST SP 800-132 PASSWORD BASED KEY DERIVATION FUNCTION (PBKDF) ... 46

9.4.2 NIST SP 800-38F AES KEY WRAPPING.. 46

9.5 KEY ENTRY AND OUTPUT ... 46

9.6 KEY STORAGE ... 47

9.7 KEY ARCHIVAL .. 47

9.8 KEY ZEROIZATION .. 47

10 SELF-TESTS .. 47

10.1 POWER-ON SELF-TESTS .. 47

10.2 CONDITIONAL SELF-TESTS .. 48

11 DESIGN ASSURANCE .. 48

12 MITIGATION OF OTHER ATTACKS ... 49

13 SECURITY LEVELS ... 51

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 7 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

14 ADDITIONAL DETAILS .. 51

15 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 52

15.1 HOW TO VERIFY WINDOWS VERSIONS ... 52

15.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES ... 52

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 8 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
This document specifies the security policy for the Microsoft Kernel Mode Cryptographic Primitives

Library (CNG.SYS) as described in FIPS PUB 140-2.

The Operational Environments (OEs) are:
1. Windows 10 Enterprise Anniversary Update (x86) running on a Dell Inspiron 660s - Intel Core i3

without AES-NI or PCLMULQDQ or SSSE 3
2. Windows 10 Enterprise Anniversary Update (x64) running on a Microsoft Surface Pro 3 - Intel

Core i7 with AES-NI and PCLMULQDQ and SSSE 3
3. Windows 10 Enterprise Anniversary Update (x64) running on a Microsoft Surface Pro 4 – Intel

Core i5 with AES-NI and PCLMULQDQ and SSSE 3
4. Windows 10 Enterprise Anniversary Update (x64) running on a Microsoft Surface Book – Intel

Core i7 with AES-NI and PCLMULQDQ and SSSE 3
5. Windows 10 Enterprise Anniversary Update (x64) running on a Dell Precision Tower 5810MT -

Intel Xeon with AES-NI and PCLMULQDQ and SSSE 3
6. Windows 10 Enterprise Anniversary Update (x64) running on a HP Compaq Pro 6305 - AMD A4

with AES-NI and PCLMULQDQ and SSSE 3
7. Windows 10 Pro Anniversary Update (x86) running on a Dell Inspiron 660s - Intel Core i3 without

AES-NI or PCLMULQDQ or SSSE 3
8. Windows 10 Pro Anniversary Update (x64) running on a Microsoft Surface Pro 3 - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
9. Windows 10 Pro Anniversary Update (x64) running on a Microsoft Surface Pro 4 - Intel Core i5

with AES-NI and PCLMULQDQ and SSSE 3
10. Windows 10 Pro Anniversary Update (x64) running on a Microsoft Surface Book - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
11. Windows 10 Pro Anniversary Update (x64) running on a Dell Precision Tower 5810MT - Intel

Xeon with AES-NI and PCLMULQDQ and SSSE 3
12. Windows 10 Anniversary Update (x64) [consumer] running on a Microsoft Surface 3 - Intel Atom

x7 with AES-NI and PCLMULQDQ and SSSE 3
13. Windows 10 Anniversary Update (x86) [consumer] running on a Dell Inspiron 660s - Intel Core i3

without AES-NI or PCLMULQDQ or SSSE 3
14. Windows 10 Anniversary Update (x64) [consumer] running on a Dell XPS 8700 - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
15. Windows 10 Enterprise LTSB Anniversary Update (x86) running on a Dell Inspiron 660s - Intel

Core i3 without AES-NI or PCLMULQDQ or SSSE 3
16. Windows 10 Enterprise LTSB Anniversary Update (x64) running on a Dell Precision Tower

5810MT - Intel Xeon with AES-NI and PCLMULQDQ and SSSE 3
17. Windows 10 Enterprise LTSB Anniversary Update (x64) running on a Dell XPS 8700 - Intel Core i7

with AES-NI and PCLMULQDQ and SSSE 3
18. Windows Server 2016 Standard Edition running on a HP Compaq Pro 6305 - AMD A4 with AES-NI

and PCLMULQDQ and SSSE 3
19. Windows Server 2016 Standard Edition running on a Dell PowerEdge R630 Server - Intel Xeon

with AES-NI and PCLMULQDQ and SSSE 3
20. Windows Server 2016 Datacenter Edition running on a Dell PowerEdge R630 Server - Intel Xeon

with AES-NI and PCLMULQDQ and SSSE 3
21. Windows Storage Server 2016 running on a Dell PowerEdge R630 Server - Intel Xeon with AES-NI

and PCLMULQDQ and SSSE 3

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 9 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

22. Windows 10 Mobile Anniversary Update running on a Microsoft Lumia 950 - Qualcomm
Snapdragon 808 (A57, A53)

herein referred to as Windows 10 OEs.

Microsoft Kernel Mode Cryptographic Primitives Library is a FIPS 140-2 Level 1 compliant, general-

purpose, software-based, cryptographic module residing at kernel mode level of the Windows operating

system, specifically, the Windows 10 OEs. Kernel Mode Cryptographic Primitives Library runs as a kernel

mode export driver, and provides cryptographic services, through their documented interfaces, to

Windows 10 OEs kernel components.

The Kernel Mode Cryptographic Primitives Library encapsulates several different cryptographic

algorithms in an easy-to-use cryptographic module accessible via the Microsoft CNG (Cryptography,

Next Generation) API. It also supports several cryptographic algorithms accessible via a FIPS function

table request IRP (I/O request packet). Windows 10 OEs kernel mode components can use general-

purpose FIPS 140-2 Level 1 compliant cryptography in Kernel Mode Cryptographic Primitives Library.

BitLocker and BitLocker to Go are a good example of usage of the Microsoft Kernel Mode Cryptographic

Primitives Library (CNG.SYS). In Figure 1 below, BitLocker functionality is contained in the Full Volume

Encryption module (FVEVOL.SYS), which calls CNG.SYS for the actual cryptographic operations.

FVEVOL.SYS does not implement any cryptographic operations in and of itself. BitLocker uses

FVEVOL.SYS to encrypt/decrypt physical hard drives that are accessed via the MiniPort driver and

Partition Manager. Similarly, BitLocker to Go uses FVEVOL.SYS to encrypt/decrypt USB storage devices

that are accessed via the USBStor driver and Partition Manager. The FVEVOL.SYS usage of CNG.SYS

cryptographic operations is the same for both BitLocker and BitLocker to Go encrypted volumes.

I/O Manager

File System

Full Volume Encryption
(FVEVOL.SYS)

Partition Manager

MiniPort

Physical
HD

USBStor

USB
device

Kernel Mode
Cryptographic

Primitives Library
(CNG.SYS)

Figure 1 The BitLocker Stack and Microsoft Kernel Mode Cryptographic Primitives Library

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 10 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1.1 List of Cryptographic Module Binary Executables
CNG.SYS – Versions 10.0.14393 and 10.0.14393.1770 for Windows 10 OEs

1.2 Version Info
10.0.14393.1770 for Windows 10 OEs

10.0.14393 for Windows 10 OEs

1.3 Brief Module Description
Kernel Mode Cryptographic Primitives Library is the kernel mode export driver for the Cryptography,

Next Generation (CNG) API.

1.4 Validated Platforms
The Kernel Mode Cryptographic Primitives Library component listed in Section 1.1 was validated using

the machine configurations specified in the list of Windows 10 OEs.

1.5 Cryptographic Boundary
The software binary that comprises the cryptographic boundary for Kernel Mode Cryptographic

Primitives Library is CNG.SYS. The crypto boundary is also defined by the enclosure of the computer

system, on which Kernel Mode Cryptographic Primitives Library is to be executed. The physical

configuration of Kernel Mode Cryptographic Primitives Library, as defined in FIPS 140-2, is multi-chip

standalone.

2 Security Policy
Kernel Mode Cryptographic Primitives Library operates under several rules that encapsulate its security

policy.

 Kernel Mode Cryptographic Primitives Library is supported on Windows 10 OEs .

 Kernel Mode Cryptographic Primitives Library operates in FIPS mode of operation only when
used with the FIPS approved version of the Windows OS Loader (winload) validated to FIPS 140-
2 under Cert. #2932 or #3502 or Windows Resume (winresume) validated to FIPS 140-2 under
Cert. #2933 or #3501 for Windows 10 OEs operating in FIPS mode.

 Windows 10 OEs are operating systems supporting a “single user” mode where there is only one
interactive user during a logon session.

 Kernel Mode Cryptographic Primitives Library is only in its Approved mode of operation when
Windows is booted normally, meaning Debug mode is disabled and Driver Signing enforcement
is enabled.

 Kernel Mode Cryptographic Primitives Library operates in its FIPS mode of operation by setting
any one of the following DWORD registry values to 1:

o \HKLM\System\CurrentControlSet\Control\Lsa\FipsAlgorithmPolicy\Enabled
o \HKLM\System\CurrentControlSet\Control\Lsa\FipsAlgorithmPolicy
o \HKLM\System\CurrentControlSet\Control\Lsa\FipsAlgorithmPolicy\MDMEnabled
o \HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptography\Configuration\Self

TestAlgorithms

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 11 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Changes to the FIPS mode registry setting do not take effect until the Windows OS has been
rebooted. The registry security policy settings can be observed with the regedit tool to
determine whether the module is in FIPS mode.

 Instead of editing the registry directly, the FIPS Local/Group Security Policy Flag may be enabled.
The Windows operating system provides a group (or local) security policy setting, “System
cryptography: Use FIPS compliant algorithms for encryption, hashing, and signing”, which when
enabled, will in turn enable one of the FIPS mode registry settings listed above. Changes to the
FIPS mode security policy setting do not take effect until the Windows OS has been rebooted.

 When properly initialized as per the guidance in this section, the Kernel Mode Cryptographic
Primitives Library will make the determination that it is validated while under the control of the
DriverEntry code block invoked by the Windows OS Loader (winload) or Windows Resume
(winresume) (as per FIPS 140-2 IG 9.10). When the determination has been made that the
module is validated, the module will operate in its FIPS mode of operation. If the module has
not been properly initialized as per the guidance in this section, then the module will make the
determination that it is not validated.

 All users assume either the User or Cryptographic Officer roles.

 Kernel Mode Cryptographic Primitives Library provides no authentication of users. Roles are
assumed implicitly. The authentication provided by the Windows 10 OEs operating system is not
in the scope of the validation.

 All cryptographic services implemented within Kernel Mode Cryptographic Primitives Library are
available to the User and Cryptographic Officer roles.

 In order to invoke the approved mode of operation, the user must call FIPS approved functions.
The following diagram illustrates the master components of the module:

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 12 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Figure 2 Master components

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 13 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.1 FIPS 140-2 Approved Algorithms
Kernel Mode Cryptographic Primitives Library implements the following FIPS 140-2 Approved
algorithms.

 FIPS 180-4 SHS SHA-1, SHA-256, SHA-384, and SHA-512 (Cert. # 3347 for version
10.0.14393)(Cert. # 4250 for version 10.0.14393.1770)

 FIPS 198-1 SHA-1, SHA-256, SHA-384, SHA-512 HMAC (Cert. # 2651 for version 10.0.14393)(Cert.
3497 for version 10.0.14393.1770)

 SP 800-67r1 Triple-DES (2 key legacy-use decryption1 and 3 key encryption/decryption) in ECB,
CBC, CFB8 and CFB64 modes (Cert. # 2227 for version 10.0.14393)(Cert. # 2675 for version
10.0.14393.1770)

 FIPS 197 AES-128, AES-192, and AES-256 in ECB, CBC, CFB8, CFB128, and CTR modes (Cert. #
4064 for version 10.0.14393)(Cert. # 5295 for version 10.0.14393.1770)

 SP 800-38B and SP 800-38C AES-128, AES-192, and AES-256 in CCM and CMAC modes (Cert. #
4064 for version 10.0.14393)(Cert. # 5295 for version 10.0.14393.1770)

 SP 800-38D AES-128, AES-192, and AES-256 GCM decryption and GMAC (Cert. # 4064 for version
10.0.14393)(Cert. # 5295 for version 10.0.14393.1770)

 SP 800-38E XTS-AES2 XTS-128 and XTS-256 (Cert. # 4064 for version 10.0.14393)(Cert. # 5295 for
version 10.0.14393.1770)

 FIPS 186-4 RSA (RSASSA-PKCS1-v1_5 and RSASSA-PSS) digital signature generation and
verification with 2048 and 3072 moduli; supporting SHA-13, SHA-256, SHA-384, and SHA-512
(Cert. # 2193 and # 2192 for version 10.0.14393)(Cert. # 2833 and # 2834 for version
10.0.14393.1770)

 FIPS 186-4 RSA key-pair generation with 2048 and 3072 moduli (Cert. # 2195 for version
10.0.14393)(Cert. # 2847 for version 10.0.14393.1770)

 FIPS 186-4 ECDSA with the following NIST curves: P-256, P-384, P-521 (Cert. # 911 for version
10.0.14393)(Cert. # 1384 for version 10.0.14393.1770)

 FIPS 186-4 DSA (Cert. # 1098 for version 10.0.14393)(Cert. # 1371 for version 10.0.14393.1770);
the DSA functions of signature generation/verification are not supported by this module. DSA
functions are not provided as a service, but parts of the DSA algorithm are required as a
prerequisite to the KAS FFC implementation contained in this module, which is why DSA is listed
here.

 KAS – SP 800-56A Diffie-Hellman Key Agreement; Finite Field Cryptography (FFC) with parameter
FB (p=2048, q=224) and FC (p=2048, q=256); key establishment methodology provides 112 bits
of encryption strength (Cert. # 92 for version 10.0.14393)(Cert. # 171for version
10.0.14393.1770)

 KAS – SP 800-56A EC Diffie-Hellman Key Agreement; Elliptic Curve Cryptography (ECC) with
parameter EC (P-256 w/ SHA-256), ED (P-384 w/ SHA-384), and EE (P-521 w/ SHA-512); key
establishment methodology provides between 128 and 256-bits of encryption strength (Cert. #
92 for version 10.0.14393)(Cert. # 171 for version 10.0.14393.1770)

 SP 800-56B RSADP mod 2048 (Cert. # 887 for version 10.0.14393)(Cert. # 1762 for version
10.0.14393.1770)

1 Two-key Triple-DES Decryption is only allowed for Legacy-usage (as per SP 800-131A). The use of two-
key Triple-DES Encryption is disallowed.
2 For XTS-AES, as enforced by policy, the length of the data unit shall not exceed 2^20 blocks. XTS-AES
mode can only be used for the cryptographic protection of data on storage devices.
3 SHA-1 is only acceptable for legacy signature verification.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 14 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 SP 800-90A AES-256 counter mode DRBG (Cert. # 1217 for version 10.0.14393)(Cert. # 2036 for
version 10.0.14393.1770)

 SP 800-108 Key Derivation Function (KDF) CMAC-AES (128, 192, 256), HMAC (SHA1, SHA-256,
SHA-384, SHA-512) (Cert. # 101 for version 10.0.14393)(Cert. # 185 for version 10.0.14393.1770)

 SP 800-132 KDF (also known as PBKDF) with HMAC (SHA-1, SHA-256, SHA-384, SHA-512) as the
pseudo-random function (vendor affirmed)

 SP 800-38F AES Key Wrapping (128, 192, and 256) (Cert. # 4062 for version 10.0.14393)(Cert. #
5298 for version 10.0.14393.1770)

 SP 800-135 IKEv1 and IKEv2 KDF primitives (Cert. # 886 for version 10.0.14393)(Cert. # 1763 for
version 10.0.14393.1770)4

2.2 Non-Approved Algorithms

 Kernel Mode Cryptographic Primitives Library implements the SHA-1 hash, which is disallowed
for use in digital signature generation. It can be used for legacy digital signature verification. Its
use is Acceptable for non-digital signature generation applications.

 If HMAC-SHA1 is used, key sizes less than 112 bits (14 bytes) are not allowed for usage in HMAC
generation, as per SP 800-131A.

 Kernel Mode Cryptographic Primitives Library implements RSA 1024-bits for digital signature
generation, which is disallowed. RSA 2048-bits and 3072-bits are also supported, which are
Acceptable.

 Kernel Mode Cryptographic Primitives Library supports SP 800-56A Key Agreement using Finite
Field Cryptography (FFC) with parameter FA (p=1024, q=160), which is disallowed. The key
establishment methodology provides 80 bits of encryption strength, which is no longer allowed
in FIPS mode. (This is in addition to the Approved 112 bits of encryption strength listed above.)

 Kernel Mode Cryptographic Primitives Library has a non-approved algorithm implementation of
AES GCM encryption.

 Kernel Mode Cryptographic Primitives Library supports 2-Key Triple-DES Encryption, which is
disallowed for usage altogether as of the end of 2015.

 Kernel Mode Cryptographic Primitives Library also supports the following non FIPS 140-2
approved algorithms:

o RSA encrypt/decrypt (disallowed in FIPS mode)
o MD5 and HMAC-MD5 (allowed in TLS and EAP-TLS)
o NDRNG (allowed for usage in FIPS mode)
o RC2, RC4, MD2, MD4 (disallowed in FIPS mode)
o DES in ECB, CBC, CFB8 and CFB64 modes (disallowed in FIPS mode)
o Legacy CAPI KDF (proprietary; disallowed in FIPS mode)
o IEEE 1619-2007 XTS-AES (disallowed in FIPS mode)
o ECDH with Curve25519 (allowed in FIPS mode as per FIPS 140-2 IG D.8 scenario 4). This

curve is assumed to provide 128 bits of security strength5.

4 This cryptographic module supports the IKEv1 and IKEv2 protocols with SP 800-135 rev 1 KDF
primitives, however, the pro tocols have not been reviewed or tested by the NIST CAVP and CMVP.
5 See Bernstein, Daniel J., Curve25519: new Diffie-Hellman speed records, URL:
https://cr.yp.to/ecdh/curve25519-20060209.pdf

https://cr.yp.to/ecdh/curve25519-20060209.pdf

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 15 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.3 Cryptographic Bypass
Cryptographic bypass is not supported by Kernel Mode Cryptographic Primitives Library.

2.4 FIPS 140-2 Approved Algorithms from Bounded Modules
A bounded module is a FIPS 140 module which provides cryptographic functionality that is relied on by a

downstream module. As described in the Integrity Chain of Trust section, the Kernel Mode

Cryptographic Primitives Library depends on the following algorithms:

Implemented in Windows OS Loader (module #2932, module #3502):

 CAVP certificate #2833 for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048
moduli; supporting SHA-256

 CAVP certificate #2193 for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048
moduli; supporting SHA-256

 CAVP certificate #4250 for FIPS 180-4 SHS SHA-256

 CAVP certificate #3347 for FIPS 180-4 SHS SHA-256

Implemented in Windows Resume (module #2933, module #3501):

 CAVP certificate #5295 for FIPS 197 AES CBC 128 and 256, SP 800-38E AES XTS 128 and 256

 CAVP certificate #4064 for FIPS 197 AES CBC 128 and 256, SP 800-38E AES XTS 128 and 256

2.5 Machine Configurations
Kernel Mode Cryptographic Primitives Library was tested using the machine configurations listed in

Section 1.4 - Validated Platforms.

3 Operational Environment
The operational environment for Kernel Mode Cryptographic Primitives Library is Windows 10 OEs

running on the software and hardware configurations listed in Section 1.4 - Validated Platforms. Kernel

Mode Cryptographic Primitives Library services are available to all kernel mode components, which are

part of the Trusted Computing Base (TCB).

4 Integrity Chain of Trust
The Windows OS Loader and Windows Resume check the integrity of Kernel Mode Cryptographic

Primitives Library before starting it. This integrity check is based on the verification of an RSA signature

over the binary using a 2048-bit key (Cert. # 2193 and #2833) and a SHA-256 hash (Cert. # 3347 and

#4250), and verifying that the signing certificate chains up to a known root authority.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 16 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

5 Ports and Interfaces
As shown in Figure 3, the Kernel Mode Cryptographic Primitives Library module is accessed through one

of four logical interfaces. Kernel applications requiring cryptographic services use the BCrypt APIs

detailed in Section 7 Services. Entropy sources supply random bits to the random number generator

through the entropy APIs. Finally, both kernel mode and user mode random number generators use the

SystemPrng interface to obtain seed material for their DRBGs.

Cng.sys

Entropy source Entropy source

Entropy API

Kernel mode application Kernel or user mode

PRNG

CNG BCrypt

APIs
SystemPrng

interface

Figure 3 Relationship of cng.sys to other system components – cryptographic boundary
shown in gold

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 17 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The following functions are used by Kernel Mode Cryptographic Primitives Library to expose

cryptographic functionality to its callers.

 BCryptCloseAlgorithmProvider

 BCryptCreateHash

 BCryptCreateMultiHash

 BCryptDecrypt

 BCryptDeriveKey

 BCryptDeriveKeyPBKDF2

 BCryptDestroyHash

 BCryptDestroyKey

 BCryptDestroySecret

 BCryptDuplicateHash

 BCryptDuplicateKey

 BCryptEncrypt

 BCryptExportKey

 BCryptFinalizeKeyPair

 BCryptFinishHash

 BCryptFreeBuffer

 BCryptGenerateKeyPair

 BCryptGenerateSymmetricKey

 BCryptGenRandom

 BCryptGetProperty

 BCryptHash

 BCryptHashData

 BCryptImportKey

 BCryptImportKeyPair

 BCryptKeyDerivation

 BCryptOpenAlgorithmProvider

 BCryptProcessMultiOperations

 BCryptSecretAgreement

 BCryptSetProperty

 BCryptSignHash

 BCryptVerifySignature

 SystemPrng

The following functions are exposed to entropy sources:

 EntropyPoolTriggerReseedForIum

 EntropyProvideData

 EntropyRegisterCallback

 EntropyRegisterSource

 EntropyUnregisterSource

All of these functions are used in the approved mode. Furthermore, these are the only approved

functions that this module can perform.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 18 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library has additional export functions described in Section 5.5

Non-Security Relevant Configuration Interfaces.

5.1 Control Input Interface
The Control Input Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel

Mode Cryptographic Primitives Library cryptographic export functions enumerated above. Options for

control operations are passed as input parameters to these functions.

5.2 Status Output Interface
The Status Output Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel

Mode Cryptographic Primitives Library export functions. For each function, the status information is

returned to the caller as the return value from the function.

5.3 Data Output Interface
The Data Output Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel Mode

Cryptographic Primitives Library export functions.

5.4 Data Input Interface
The Data Input Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel Mode

Cryptographic Primitives Library export functions. Data and options are passed to the interface as input

parameters to the Kernel Mode Cryptographic Primitives Library export functions. Data Input is kept

separate from Control Input by passing Data Input in separate parameters from Control Input.

5.5 Non-Security Relevant Configuration Interfaces
These are not cryptographic functions. They are used to configure cryptographic providers on the

system, and are provided for informational purposes. Please see https://msdn.microsoft.com for details.

Table 1

Function Name Description

BCryptEnumAlgorithms Enumerates the algorithms for a given set of operations.

BCryptEnumProviders Returns a list of CNG providers for a given algorithm.

BCryptRegisterConfigChangeNotify This is deprecated beginning with Windows 10.

BCryptResolveProviders Resolves queries against the set of providers currently
registered on the local system and the configuration
information specified in the machine and domain
configuration tables, returning an ordered list of references
to one or more providers matching the specified criteria.

BCryptAddContextFunctionProvider Adds a cryptographic function provider to the list of
providers that are supported by an existing CNG context.

BCryptRegisterProvider Registers a CNG provider.

BCryptUnregisterProvider Unregisters a CNG provider.

BCryptUnregisterConfigChangeNotify Removes a CNG configuration change event handler. This
API differs slightly between User-Mode and Kernel-Mode.

https://msdn.microsoft.com/

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 19 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCryptGetFipsAlgorithmMode
CngGetFipsAlgorithmMode

Determines whether Kernel Mode Cryptographic Primitives
Library is operating in FIPS mode. Some applications use the
value returned by this API to alter their own behavior, such
as blocking the use of some SSL versions.

EntropyRegisterCallback Registers the callback function that will be called in a worker
thread after every reseed that the system performs. The
callback is merely informational.

6 Specification of Roles
Kernel Mode Cryptographic Primitives Library provides User and Cryptographic Officer roles (as defined

in FIPS 140-2). These roles share all the services implemented in the cryptographic module.

When a kernel mode component requests the crypto module to generate keys, the keys are generated,

used, and deleted as requested. There are no implicit keys associated with a kernel component. Each

kernel component may have numerous keys.

6.1 Maintenance Roles
Maintenance roles are not supported.

6.2 Multiple Concurrent Interactive Operators
There is only one interactive operator in Single User Mode. When run in this configuration, multiple

concurrent interactive operators are not supported. This configuration is set by disabling user switching

and disabling remote desktop access.

1. Open the Group Policy Editor by right-clicking the Start menu and selecting Run. Type

gpedit.msc in the Run box and click OK.

2. Go to Local Computer Policy >> Computer Configuration >> Administrative Templates >> System

>> Logon.

3. On the right side of the window, open “Hide entry points for Fast User Switching” and set the

Enabled option. Click the OK button.

4. Open System Properties by right-clicking the Start menu and selecting System. Click the Remote

Settings link.

5. Select the “Don’t allow remote connections to this computer” option. Click the OK button.

6.3 Operator Authentication

The module does not provide authentication. Roles are implicitly assumed based on the services that are

executed.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 20 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7 Services
The following list contains all services available to an operator. All services are accessible to both the

User and Crypto Officer roles. In addition, there is zeroization (see Section 9 Security Relevant Data

Items).

All of the services enumerated in this section are Approved services except Section 7.16 Non-Approved

Services.

7.1 Power Up and Power Down

7.1.1 DriverEntry
Each Windows 10 OEs driver must have a standard initialization routine DriverEntry in order to

be loaded. The Windows OS Loader and Windows Resume are responsible to call the DriverEntry

routine. The DriverEntry routine must have the following prototype.

NTSTATUS (*PDRIVER_INITIALIZE) (

IN PDRIVER_OBJECT DriverObject,

IN PUNICODE_STRING RegistryPath);

The input DriverObject represents the driver within the Windows 10 OEs system. Its pointer allows the

DriverEntry routine to set an appropriate entry point for its DriverUnload routine in the driver object.

The RegistryPath input to the DriverEntry routine points to a counted Unicode string that specifies a

path to the driver's registry key \Registry\Machine\System\CurrentControlSet\Services\CNG.

7.1.2 DriverUnload
It is the entry point for the driver's unload routine. The pointer to the routine is set by the DriverEntry

routine in the DriverUnload field of the DriverObject when the driver initializes. An Unload routine is

declared as follows:

VOID (*PDRIVER_UNLOAD) (

IN PDRIVER_OBJECT DriverObject);

When the driver is no longer needed, the Windows 10 OEs Kernel is responsible to call the DriverUnload

routine of the associated DriverObject.

7.2 Algorithm Providers and Properties

7.2.1 BCryptOpenAlgorithmProvider
NTSTATUS WINAPI BCryptOpenAlgorithmProvider(

BCRYPT_ALG_HANDLE *phAlgorithm,

LPCWSTR pszAlgId,

LPCWSTR pszImplementation,

ULONG dwFlags);

The BCryptOpenAlgorithmProvider() function has four parameters: algorithm handle output to the

opened algorithm provider, desired algorithm ID input, an optional specific provider name input, and

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 21 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

optional flags. This function loads and initializes a CNG provider for a given algorithm, and returns a

handle to the opened algorithm provider on success.

Unless the calling function specifies the name of the provider, the default provider is used.

The calling function must pass the BCRYPT_ALG_HANDLE_HMAC_FLAG flag in order to use an HMAC

function with a hash algorithm.

7.2.2 BCryptCloseAlgorithmProvider
NTSTATUS WINAPI BCryptCloseAlgorithmProvider(

BCRYPT_ALG_HANDLE hAlgorithm,

ULONG dwFlags);

This function closes an algorithm provider handle opened by a call to BCryptOpenAlgorithmProvider()

function.

7.2.3 BCryptSetProperty
NTSTATUS WINAPI BCryptSetProperty(

BCRYPT_HANDLE hObject,

LPCWSTR pszProperty,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptSetProperty() function sets the value of a named property for a CNG object. The CNG object

is a handle, the property name is a NULL terminated string, and the value of the property is a length-

specified byte string.

7.2.4 BCryptGetProperty
NTSTATUS WINAPI BCryptGetProperty(

BCRYPT_HANDLE hObject,

LPCWSTR pszProperty,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptGetProperty() function retrieves the value of a named property for a CNG object. The CNG

object is a handle, the property name is a NULL terminated string, and the value of the property is a

length-specified byte string.

7.2.5 BCryptFreeBuffer
VOID WINAPI BCryptFreeBuffer(

PVOID pvBuffer);

Some of the CNG functions allocate memory on caller’s behalf. The BCryptFreeBuffer() function frees

memory that was allocated by such a CNG function.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 22 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.3 Random Number Generation

7.3.1 BCryptGenRandom
NTSTATUS WINAPI BCryptGenRandom(

BCRYPT_ALG_HANDLE hAlgorithm,

PUCHAR pbBuffer,

ULONG cbBuffer,

ULONG dwFlags);

The BCryptGenRandom() function fills a buffer with random bytes. The random number generation

algorithm is:

 BCRYPT_RNG_ALGORITHM. This is the AES-256 counter mode based random generator as
defined in SP 800-90A.

During the function initialization, a seed is obtained from the output of the SystemPrng function. This

provides the necessary entropy for the DRBG available through this function.

7.3.2 SystemPrng
BOOL SystemPrng(

unsigned char *pbRandomData,

size_t cbRandomData);

The SystemPrng() function fills a buffer with random bytes. It generates these bytes by taking the output

of a cascade of two SP 800-90A AES-256 counter mode based DRBGs in kernel-mode and four cascaded

SP 800-90A AES-256 DRBGs in user-mode; all are seeded from the Windows entropy pool. The Windows

entropy pool is populated from the following sources:

 An initial entropy value provided by the Windows OS Loader (Cert. #2932 and #3502) at boot

time.

 The values of the high-resolution CPU cycle counter at times when hardware interrupts are

received.

 Random values gathered from the Trusted Platform Module (TPM), if one is available on the

system.

 Random values gathered by calling the RDRAND CPU instruction, if supported by the CPU.

The Windows DRBG infrastructure located in cng.sys continues to gather entropy from these sources

during normal operation, and the DRBG cascade is periodically reseeded with new entropy.

7.3.3 EntropyRegisterSource
NTSTATUS EntropyRegisterSource(

ENTROPY_SOURCE_HANDLE * phEntropySource,

ENTROPY_SOURCE_TYPE entropySourceType,

PCWSTR entropySourceName);

This function is used to obtain a handle that can be used to contribute randomness to the Windows

entropy pool. The handle is returned in the phEntropySource parameter. For this function,

entropySource must be set to ENTROPY_SOURCE_TYPE_HIGH_PUSH, and entropySourceName must be

a Unicode string describing the entropy source.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 23 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.3.4 EntropyUnregisterSource
NTSTATUS EntropyRegisterSource(

ENTROPY_SOURCE_HANDLE hEntropySource);

This function is used to destroy a handle created with EntropyRegisterSource().

7.3.5 EntropyProvideData
NTSTATUS EntropyProvideData(

ENTROPY_SOURCE_HANDLE hEntropySource,

PCBYTE pbData,

SIZE_T cbData,

ULONG entropyEstimateInMilliBits);

This function is used to contribute entropy to the Windows entropy pool. hEntropySource must be a

handle returned by an earlier call to EntropyRegisterSource. The caller provides cbData bytes in the

buffer pointed to by pbData, as well as an estimate (in the entropyEstimateInMilliBits parameter) of how

many millibits of entropy are contained in these bytes.

7.3.6 EntropyPoolTriggerReseedForIum

VOID EntropyPoolTriggerReseedForIum(BOOLEAN fPerformCallbacks);

This function will trigger a kernel DRBG reseed for the cng.sys inside the IUM (Isolated User Mode)

environment. If called inside the IUM environment, it triggers a reseed from one or more of the entropy

pools of the system. If called inside the normal world (non-IUM) environment, this function does

nothing.

7.4 Key and Key-Pair Generation
7.4.1 BCryptGenerateSymmetricKey

NTSTATUS WINAPI BCryptGenerateSymmetricKey(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

PUCHAR pbSecret,

ULONG cbSecret,

ULONG dwFlags);

The BCryptGenerateSymmetricKey() function generates a symmetric key object for use with a symmetric

encryption or key derivation algorithm from a supplied key value. The calling application must specify a

handle to the algorithm provider created with the BCryptOpenAlgorithmProvider() function. The

algorithm specified when the provider was created must support symmetric key encryption or key

derivation.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 24 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.4.2 BCryptGenerateKeyPair
NTSTATUS WINAPI BCryptGenerateKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE *phKey,

ULONG dwLength,

ULONG dwFlags);

The BCryptGenerateKeyPair() function creates an empty public/private key pair. After creating a key

using this function, call the BCryptSetProperty() function to set its properties. The key pair can be used

only after BCryptFinalizeKeyPair() function is called.

7.4.3 BCryptFinalizeKeyPair
NTSTATUS WINAPI BCryptFinalizeKeyPair(

BCRYPT_KEY_HANDLE hKey,

ULONG dwFlags);

The BCryptFinalizeKeyPair() function completes a public/private key pair import or generation. The key

pair cannot be used until this function has been called. After this function has been called, the

BCryptSetProperty() function can no longer be used for this key.

7.4.4 BCryptDuplicateKey
NTSTATUS WINAPI BCryptDuplicateKey(

BCRYPT_KEY_HANDLE hKey,

BCRYPT_KEY_HANDLE *phNewKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

ULONG dwFlags);

The BCryptDuplicateKey() function creates a duplicate of a symmetric key.

7.4.5 BCryptDestroyKey
NTSTATUS WINAPI BCryptDestroyKey(

BCRYPT_KEY_HANDLE hKey);

The BCryptDestroyKey() function destroys the specified key.

7.5 Key Entry and Output

7.5.1 BCryptImportKey
NTSTATUS WINAPI BCryptImportKey(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

PUCHAR pbInput,

ULONG cbInput,

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 25 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

ULONG dwFlags);

The BCryptImportKey() function imports a symmetric key from a key blob.

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by

calling the BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of

BLOB that is contained in the pbInput buffer. pszBlobType can be one of BCRYPT_AES_WRAP_KEY_BLOB,

BCRYPT_KEY_DATA_BLOB and BCRYPT_OPAQUE_KEY_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key that is

used in subsequent functions that require a key, such as BCryptEncrypt. This handle must be released

when it is no longer needed by passing it to the BCryptDestroyKey function.

pbKeyObject [out] is a pointer to a buffer that receives the imported key object. The cbKeyObject

parameter contains the size of this buffer. The required size of this buffer can be obtained by calling the

BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of

the key object for the specified algorithm. This memory can only be freed after the phKey key handle is

destroyed.

cbKeyObject [in] is the size, in bytes, of the pbKeyObject buffer.

pbInput [in] is the address of a buffer that contains the key BLOB to import.

The cbInput parameter contains the size of this buffer.

The pszBlobType parameter specifies the type of key BLOB this buffer contains.

cbInput [in] is the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are currently defined, so

this parameter should be zero..

7.5.2 BCryptImportKeyPair
NTSTATUS WINAPI BCryptImportKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptImportKeyPair() function is used to import a public/private key pair from a key blob.

http://msdn.microsoft.com/library/en-us/seccng/security/bcryptopenalgorithmprovider_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptencrypt_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptdestroykey_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptgetproperty_func.asp

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 26 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by

calling the BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of

BLOB that is contained in the pbInput buffer. This can be one of the following values:

BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB, BCRYPT_ECCPRIVATE_BLOB,

BCRYPT_ECCPUBLIC_BLOB, BCRYPT_PUBLIC_KEY_BLOB, BCRYPT_PRIVATE_KEY_BLOB,

BCRYPT_RSAPRIVATE_BLOB, BCRYPT_RSAPUBLIC_BLOB, LEGACY_DH_PUBLIC_BLOB,

LEGACY_DH_PRIVATE_BLOB, LEGACY_RSAPRIVATE_BLOB, LEGACY_RSAPUBLIC_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key. This

handle is used in subsequent functions that require a key, such as BCryptSignHash. This handle must be

released when it is no longer needed by passing it to the BCryptDestroyKey function.

pbInput [in] is the address of a buffer that contains the key BLOB to import. The cbInput parameter

contains the size of this buffer. The pszBlobType parameter specifies the type of key BLOB this buffer

contains.

cbInput [in] contains the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or the following

value: BCRYPT_NO_KEY_VALIDATION.

7.5.3 BCryptExportKey
NTSTATUS WINAPI BCryptExportKey(

BCRYPT_KEY_HANDLE hKey,

BCRYPT_KEY_HANDLE hExportKey,

LPCWSTR pszBlobType,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptExportKey() function exports a key to a memory blob that can be persisted for later use.

hExportKey [in, out] is not currently used and should be set to NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of

BLOB to export. This can be one of the following values: BCRYPT_AES_WRAP_KEY_BLOB,

BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB, BCRYPT_ECCPRIVATE_BLOB,

BCRYPT_ECCPUBLIC_BLOB, BCRYPT_KEY_DATA_BLOB, BCRYPT_OPAQUE_KEY_BLOB,

BCRYPT_PUBLIC_KEY_BLOB, BCRYPT_PRIVATE_KEY_BLOB, BCRYPT_RSAPUBLIC_BLOB,

LEGACY_DH_PRIVATE_BLOB, LEGACY_DH_PUBLIC_BLOB, LEGACY_RSAPUBLIC_BLOB.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 27 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

pbOutput is the address of a buffer that receives the key BLOB. The cbOutput parameter contains the

size of this buffer. If this parameter is NULL, this function will place the required size, in bytes, in the

ULONG pointed to by the pcbResult parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the

pbOutput buffer. If the pbOutput parameter is NULL, this function will place the required size, in bytes,

in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are defined for this

function.

7.6 Encryption and Decryption

7.6.1 BCryptEncrypt
NTSTATUS WINAPI BCryptEncrypt(

BCRYPT_KEY_HANDLE hKey,

PUCHAR pbInput,

ULONG cbInput,

VOID *pPaddingInfo,

PUCHAR pbIV,

ULONG cbIV,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptEncrypt() function encrypts a block of data of given length.

hKey [in, out] is the handle of the key to use to encrypt the data. This handle is obtained from one of the

key creation functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or

BCryptImportKey.

pbInput [in] is the address of a buffer that contains the plaintext to be encrypted. The cbInput

parameter contains the size of the plaintext to encrypt. For more information, see Remarks.

cbInput [in] is the number of bytes in the pbInput buffer to encrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type

of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is

only used with asymmetric keys and authenticated encryption modes (i.e. AES-CCM and AES-GCM). It

must be NULL otherwise.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 28 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV)6 to use during

encryption. The cbIV parameter contains the size of this buffer. This function will modify the contents of

this buffer. If you need to reuse the IV later, make sure you make a copy of this buffer before calling this

function. This parameter is optional and can be NULL if no IV is used. The required size of the IV can be

obtained by calling the BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This

will provide the size of a block for the algorithm, which is also the size of the IV.

cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer that will receive the ciphertext produced by this

function. The cbOutput parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size needed for the ciphertext and return the

size in the location pointed to by the pcbResult parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer. This parameter is ignored if the

pbOutput parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the

pbOutput buffer. If pbOutput is NULL, this receives the size, in bytes, required for the ciphertext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends

on the type of key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the

following value: BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the

following values: BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

7.6.2 BCryptDecrypt
NTSTATUS WINAPI BCryptDecrypt(

BCRYPT_KEY_HANDLE hKey,

PUCHAR pbInput,

ULONG cbInput,

VOID *pPaddingInfo,

PUCHAR pbIV,

ULONG cbIV,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptDecrypt() function decrypts a block of data of given length.

6 The IV being passed into the BCryptEncrypt() API needs to be generated by a validated cryptographic
module or an approved DRBG.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 29 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

hKey [in, out] is the handle of the key to use to decrypt the data. This handle is obtained from one of the

key creation functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or

BCryptImportKey.

pbInput [in] is the address of a buffer that contains the ciphertext to be decrypted. The cbInput

parameter contains the size of the ciphertext to decrypt. For more information, see Remarks.

cbInput [in] is the number of bytes in the pbInput buffer to decrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type

of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is

only used with asymmetric keys and authenticated encryption modes (i.e. AES-CCM and AES-GCM). It

must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during

decryption. The cbIV parameter contains the size of this buffer. This function will modify the contents of

this buffer. If you need to reuse the IV later, make sure you make a copy of this buffer before calling this

function. This parameter is optional and can be NULL if no IV is used. The required size of the IV can be

obtained by calling the BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This

will provide the size of a block for the algorithm, which is also the size of the IV.

cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer to receive the plaintext produced by this function.

The cbOutput parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size required for the plaintext and return the

size in the location pointed to by the pcbResult parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput

parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable to receive the number of bytes copied to the pbOutput

buffer. If pbOutput is NULL, this receives the size, in bytes, required for the plaintext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends

on the type of key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the

following value: BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the

following values: BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 30 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.7 Hashing and Message Authentication

7.7.1 BCryptCreateHash
NTSTATUS WINAPI BCryptCreateHash(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_HASH_HANDLE *phHash,

PUCHAR pbHashObject,

ULONG cbHashObject,

PUCHAR pbSecret,

ULONG cbSecret,

ULONG dwFlags);

The BCryptCreateHash() function creates a hash object with an optional key. The optional key is used for

HMAC, AES GMAC and AES CMAC.

hAlgorithm [in, out] is the handle of an algorithm provider created by using the

BCryptOpenAlgorithmProvider function. The algorithm that was specified when the provider was

created must support the hash interface.

phHash [out] is a pointer to a BCRYPT_HASH_HANDLE value that receives a handle that represents the

hash object. This handle is used in subsequent hashing functions, such as the BCryptHashData function.

When you have finished using this handle, release it by passing it to the BCryptDestroyHash function.

pbHashObject [out] is a pointer to a buffer that receives the hash object. The cbHashObject parameter

contains the size of this buffer. The required size of this buffer can be obtained by calling the

BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of

the hash object for the specified algorithm. This memory can only be freed after the hash handle is

destroyed.

cbHashObject [in] contains the size, in bytes, of the pbHashObject buffer.

pbSecret [in, optional] is a pointer to a buffer that contains the key to use for the hash. The cbSecret

parameter contains the size of this buffer. If no key should be used with the hash, set this parameter to

NULL. This key only applies to the HMAC, AES GMAC and AES CMAC algorithms.

cbSecret [in, optional] contains the size, in bytes, of the pbSecret buffer. If no key should be used with

the hash, set this parameter to zero.

dwFlags [in] is not currently used and must be zero.

7.7.2 BCryptHashData
NTSTATUS WINAPI BCryptHashData(

BCRYPT_HASH_HANDLE hHash,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 31 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The BCryptHashData() function performs a one way hash on a data buffer. Call the BCryptFinishHash()

function to finalize the hashing operation to get the hash result.

7.7.3 BCryptDuplicateHash
NTSTATUS WINAPI BCryptDuplicateHash(

BCRYPT_HASH_HANDLE hHash,

BCRYPT_HASH_HANDLE *phNewHash,

PUCHAR pbHashObject,

ULONG cbHashObject,

ULONG dwFlags);

The BCryptDuplicateHash()function duplicates an existing hash object. The duplicate hash object

contains all state and data that was hashed to the point of duplication.

7.7.4 BCryptFinishHash
NTSTATUS WINAPI BCryptFinishHash(

BCRYPT_HASH_HANDLE hHash,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG dwFlags);

The BCryptFinishHash() function retrieves the hash value for the data accumulated from prior calls to

BCryptHashData() function.

7.7.5 BCryptDestroyHash
NTSTATUS WINAPI BCryptDestroyHash(

BCRYPT_HASH_HANDLE hHash);

The BCryptDestroyHash() function destroys a hash object.

7.7.6 BCryptHash

NTSTATUS WINAPI BCryptHash(

BCRYPT_ALG_HANDLE hAlgorithm,

PUCHAR pbSecret,

ULONG cbSecret,

PUCHAR pbInput,

ULONG cbInput,

PUCHAR pbOutput,

ULONG cbOutput);

The function BCryptHash() performs a single hash computation. This is a convenience function that

wraps calls to the BCryptCreateHash(), BCryptHashData(), BCryptFinishHash(), and BCryptDestroyHash()

functions.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 32 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.7.7 BCryptCreateMultiHash

NTSTATUS WINAPI BCryptCreateMultiHash(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_HASH_HANDLE *phHash,
ULONG nHashes,
PUCHAR pbHashObject,
ULONG cbHashObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

BCryptCreateMultiHash() is a function that creates a new MultiHash object that is used in parallel

hashing to improve performance. The MultiHash object is equivalent to an array of normal (reusable)

hash objects.

hAlgorithm [in out] is the handle of an algorithm provider. See the BCryptCreateHash() description

above for details.

phHash [out] is a pointer to the hHash handle to be returned by this function. This hHash handle can be

freed using the BCryptDestroyHash() function. Use of this particular hHash in BCryptDuplicateHash() is

currently not supported by the default algorithm provider.

nHashes [in] nHashes is the number of entries in the array. nHashes must be at least 1. The default

provider implements an upper bound of 64 hash states.

pbHashObject [out, optional] is a pointer to a buffer that receives the hash object. See the

BCryptCreateHash() description above for details.

cbHashObject [in] contains the size, in bytes, of the pbHashObject buffer.

pbSecret [in, optional] specifies the key (if any) for all of the hash computations that will be done using

this MultiHash object. The secret is used for all of the array entries.

cbSecret [in] is the size in bytes of the pbSecret buffer.

dwFlags [in]] is not currently used and must be zero.

7.7.8 BCryptProcessMultiOperations

NTSTATUS WINAPI BCryptProcessMultiOperations(
BCRYPT_HANDLE hObject,
BCRYPT_MULTI_OPERATION_TYPE operationType,
PVOID pOperations,
ULONG cbOperations,
ULONG dwFlags);

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 33 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The BCryptProcessMultiOperations() function is used to perform multiple operations on a single multi-

object handle such as a MultiHash object handle. If any of the operations fail, then the function will

return an error.

hObject [in out] is the hObject handle referring to the multi-object.

operationType [in] specifies the type of operation structure being passed in the

pOperations/cbOperations buffer.

pOperations [in] is a pointer that must point to a valid array of the specified type; e.g. alignment

requirements must be met.

cbOperations [in] must be nonzero and a multiple of the sizeof of the specified type.

dwFlags [in] is not currently used and must be zero.

Each element of the operations array specifies an operation to be performed on/with the hObject.

For hash operations, there are two operation types:

 Hash data

 Finalize hash

These correspond directly to BCryptHashData() and BCryptFinishHash(). Each operation specifies an

index of the hash object inside the hObject MultiHash object that this operation applies to. Operations

are executed in any order or even in parallel, with the sole restriction that the set of operations that

specify the same index are all executed in-order.

7.8 Signing and Verification

7.8.1 BCryptSignHash
NTSTATUS WINAPI BCryptSignHash(

BCRYPT_KEY_HANDLE hKey,

VOID *pPaddingInfo,

PUCHAR pbInput,

ULONG cbInput,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptSignHash() function creates a signature of a hash value.

hKey [in] is the handle of the key to use to sign the hash.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type

of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is

only used with asymmetric keys and must be NULL otherwise.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 34 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

pbInput [in] is a pointer to a buffer that contains the hash value to sign. The cbInput parameter contains

the size of this buffer.

cbInput [in] is the number of bytes in the pbInput buffer to sign.

pbOutput [out] is the address of a buffer to receive the signature produced by this function. The

cbOutput parameter contains the size of this buffer. If this parameter is NULL, this function will calculate

the size required for the signature and return the size in the location pointed to by the pcbResult

parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput

parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the

pbOutput buffer. If pbOutput is NULL, this receives the size, in bytes, required for the signature.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends

on the type of key specified by the hKey parameter. If the key is a symmetric key, this parameter is not

used and should be set to zero. If the key is an asymmetric key, this can be one of the following values:

BCRYPT_PAD_PKCS1, BCRYPT_PAD_PSS.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is disallowed for digital

signature generation. SHA-1 is currently legacy-use for digital signature verification.

7.8.2 BCryptVerifySignature
NTSTATUS WINAPI BCryptVerifySignature(

BCRYPT_KEY_HANDLE hKey,

VOID *pPaddingInfo,

PUCHAR pbHash,

ULONG cbHash,

PUCHAR pbSignature,

ULONG cbSignature,

ULONG dwFlags);

The BCryptVerifySignature() function verifies that the specified signature matches the specified hash.

hKey [in] is the handle of the key to use to decrypt the signature. This must be an identical key or the

public key portion of the key pair used to sign the data with the BCryptSignHash function.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type

of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is

only used with asymmetric keys and must be NULL otherwise.

pbHash [in] is the address of a buffer that contains the hash of the data. The cbHash parameter contains

the size of this buffer.

cbHash [in] is the size, in bytes, of the pbHash buffer.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 35 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

pbSignature [in] is the address of a buffer that contains the signed hash of the data. The BCryptSignHash

function is used to create the signature. The cbSignature parameter contains the size of this buffer.

cbSignature [in] is the size, in bytes, of the pbSignature buffer. The BCryptSignHash function is used to

create the signature.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is disallowed for digital

signature generation. SHA-1 is currently legacy-use for digital signature verification.

7.9 Secret Agreement and Key Derivation

7.9.1 BCryptSecretAgreement
NTSTATUS WINAPI BCryptSecretAgreement(

BCRYPT_KEY_HANDLE hPrivKey,

BCRYPT_KEY_HANDLE hPubKey,

BCRYPT_SECRET_HANDLE *phAgreedSecret,

ULONG dwFlags);

The BCryptSecretAgreement() function creates a secret agreement value from a private and a public

key. This function is used with Diffie-Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) algorithms.

hPrivKey [in] The handle of the private key to use to create the secret agreement value.

hPubKey [in] The handle of the public key to use to create the secret agreement value.

phSecret [out] A pointer to a BCRYPT_SECRET_HANDLE that receives a handle that represents the secret

agreement value. This handle must be released by passing it to the BCryptDestroySecret function when

it is no longer needed.

dwFlags [in] A set of flags that modify the behavior of this function. This must be zero.

7.9.2 BCryptDeriveKey
NTSTATUS WINAPI BCryptDeriveKey(

BCRYPT_SECRET_HANDLE hSharedSecret,

LPCWSTR pwszKDF,

BCryptBufferDesc *pParameterList,

PUCHAR pbDerivedKey,

ULONG cbDerivedKey,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptDeriveKey() function derives a key from a secret agreement value.

hSharedSecret [in, optional] is the secret agreement handle to create the key from. This handle is

obtained from the BCryptSecretAgreement function.

pwszKDF [in] is a pointer to a null-terminated Unicode string that contains an object identifier (OID) that

identifies the key derivation function (KDF) to use to derive the key. This can be one of the following

strings: BCRYPT_KDF_HASH (parameters in pParameterList: KDF_HASH_ALGORITHM,

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 36 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

KDF_SECRET_PREPEND, KDF_SECRET_APPEND), BCRYPT_KDF_HMAC (parameters in pParameterList:

KDF_HASH_ALGORITHM, KDF_HMAC_KEY, KDF_SECRET_PREPEND, KDF_SECRET_APPEND),

BCRYPT_KDF_SP80056A_CONCAT (parameters in pParameterList: KDF_ALGORITHMID,

KDF_PARTYUINFO, KDF_PARTYVINFO, KDF_SUPPPUBINFO, KDF_SUPPPRIVINFO).

pParameterList [in, optional] is the address of a BCryptBufferDesc structure that contains the KDF

parameters. This parameter is optional and can be NULL if it is not needed.

Note: When supporting a key agreement scheme that requires a nonce, BCryptDeriveKey uses

whichever nonce is supplied by the caller in the BCryptBufferDesc. Examples of the nonce types are

found in Section 5.4 of http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

When using a nonce, a random nonce should be used. And then if the random nonce is used, the

entropy (amount of randomness) of the nonce and the security strength of the DRBG has to be at least

one half of the minimum required bit length of the subgroup order.

For example:

for KAS FFC, entropy of nonce must be 112 bits for FB, 128 bits for FC.

for KAS ECC, entropy of the nonce must be 128 bits for EC, 182 for ED, 256 for EF.

pbDerivedKey [out, optional] is the address of a buffer that receives the key. The cbDerivedKey

parameter contains the size of this buffer. If this parameter is NULL, this function will place the required

size, in bytes, in the ULONG pointed to by the pcbResult parameter.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the

pbDerivedKey buffer. If the pbDerivedKey parameter is NULL, this function will place the required size,

in bytes, in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or

KDF_USE_SECRET_AS_HMAC_KEY_FLAG. The KDF_USE_SECRET_AS_HMAC_KEY_FLAG value must only

be used when pwszKDF is equal to BCRYPT_KDF_HMAC. It indicates that the secret will also be used as

the HMAC key. If this flag is used, the KDF_HMAC_KEY parameter must not be specified in

pParameterList.

7.9.3 BCryptDestroySecret
NTSTATUS WINAPI BCryptDestroySecret(

BCRYPT_SECRET_HANDLE hSecret);

The BCryptDestroySecret() function destroys a secret agreement handle that was created by using the

BCryptSecretAgreement() function.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 37 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.9.4 BCryptKeyDerivation

NTSTATUS WINAPI BCryptKeyDerivation(

 In BCRYPT_KEY_HANDLE hKey,

 _In_opt_ BCryptBufferDesc *pParameterList,

 _Out_writes_bytes_to_(cbDerivedKey, *pcbResult) PUCHAR pbDerivedKey,

 In ULONG cbDerivedKey,

 Out ULONG *pcbResult,

 In ULONG dwFlags);

The BCryptKeyDerivation() function executes a Key Derivation Function (KDF) on a key generated with

BCryptGenerateSymmetricKey() function. It differs from the BCryptDeriveKey() function in that it does

not require a secret agreement step to create a shared secret.

hKey [in] is a handle to a key created with the BCryptGenerateSymmetricKey function.

pParameterList [in] is the algorithm-specific parameter list for the selected KDF.

pbDerivedKey [out] is the address of a buffer that receives the key. The cbDerivedKey parameter

contains the size of this buffer.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the

pbDerivedKey buffer. If the pbDerivedKey parameter is NULL, this function will place the required size,

in bytes, in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. This must be zero.

7.9.5 BCryptDeriveKeyPBKDF2

NTSTATUS WINAPI BCryptDeriveKeyPBKDF2(
BCRYPT_ALG_HANDLE hPrf,

 PUCHAR pbPassword,
ULONG cbPassword,
PUCHAR pbSalt,
ULONG cbSalt,
ULONGLONG cIterations,
PUCHAR pbDerivedKey,
ULONG cbDerivedKey,
ULONG dwFlags);

The BCryptDeriveKeyPBKDF2() function derives a key from a hash value by using the password based key

derivation function as defined by SP 800-132 PBKDF and IETF RFC 2898 (specified as PBKDF2).

hPrf [in] is the handle of an algorithm provider that provides the pseudo-random function.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 38 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

pbPassword [in, optional] is a pointer to a buffer that contains the password parameter for the PBKDF2

key derivation algorithm.

cbPassword [in] is the length, in bytes, of the data in the buffer pointed to by the pbPassword

parameter.

pbSalt [in, optional] is a pointer to a buffer that contains the salt argument for the PBKDF2 key

derivation algorithm.

cbSalt [in] is the length, in bytes, of the salt argument pointed to by the pbSalt parameter.

cIterations [in] is the iteration count for the PBKDF2 key derivation algorithm.

pbDerivedKey [out] is a pointer to a buffer that receives the derived key.

cbDerivedKey [in] is the length, in bytes, of the derived key returned in the buffer pointed to by the

pbDerivedKey parameter.

dwFlags [in] This parameter is reserved and must be set to zero.

7.10 Deprecation

7.10.1 Bit Strengths of DH and ECDH

Through the year 2010, implementations of DH and ECDH were allowed to have an acceptable bit

strength of at least 80 bits of security (for DH at least 1024 bits and for ECDH at least 160 bits). From

2011 through 2013, 80 bits of security strength was considered deprecated, and was disallowed starting

January 1, 2014. As of that date, only security strength of at least 112 bits is acceptable. ECDH uses

curve sizes of at least 256 bits (that means it has at least 128 bits of security strength), so that is

acceptable. However, DH has a range of 1024 to 4096 and that changed to 2048 to 4096 after 2013.

7.10.2 SHA-1

From 2011 through 2013, SHA-1 could be used in a deprecated mode for use in digital signature

generation. As of Jan. 1, 2014, SHA-1 is no longer allowed for digital signature generation, and it is

allowed for legacy use only for digital signature verification.

7.11 Show Status Services
The User and Cryptographic Officer roles have the same Show Status functionality, which is, for each

function, the status information is returned to the caller as the return value from the function.

7.12 Self-Test Services
The User and Cryptographic Officer roles have the same Self-Test functionality, which is described in

Section 10 Self-Tests.

7.13 Service Inputs / Outputs
The User and Cryptographic Officer roles have service inputs and outputs as specified in Section 5 Ports

and Interfaces and as described in detail above.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 39 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.14 Mapping of Services, Algorithms, and Critical Security Parameters
The following table maps the services to their corresponding algorithms and critical security parameters

(CSPs).

Table 2

Service Algorithms CSPs

Power Up and Power Down None None

Algorithm Providers and
Properties

None None

Random Number Generation AES-256 CTR DRBG
NDRNG (allowed, used to provide
entropy to DRBG)

AES-CTR DRBG Seed
AES-CTR DRBG Entropy Input
AES-CTR DRBG V
AES-CTR DRBG Key

Key and Key-Pair Generation RSA, DH, ECDH, ECDSA, RC2, RC4,
DES, Triple-DES, AES, and HMAC
(RC2, RC4, and DES cannot be
used in FIPS mode.)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Key Entry and Output SP 800-38F AES Key Wrapping
(128, 192, and 256)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Encryption and Decryption Triple-DES with 2 key (encryption
disallowed) and 3 key in ECB,
CBC, CFB8 and CFB64 modes;
AES-128, AES-192, and AES-256
in ECB, CBC, CFB8, CFB128, and
CTR modes;
AES-128, AES-192, and AES-256
in CCM, CMAC, and GMAC
modes;
AES-128, AES-192, and AES-256
GCM decryption;
XTS-AES XTS-128 and XTS-256;
SP 800-56B RSADP mod 2048;
IEEE 1619-2007 XTS-AES (non-
FIPS Approved algorithm)
(RC2, RC4, RSA, and DES, which
cannot be used in FIPS mode)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Hashing and Message
Authentication

FIPS 180-4 SHS SHA-1, SHA-256,
SHA-384, and SHA-512;
FIPS 180-4 SHA-1, SHA-256, SHA-
384, SHA-512 HMAC;
AES-128, AES-192, and AES-256
in CCM, CMAC, and GMAC;
MD5 and HMAC-MD5 (allowed in
TLS and EAP-TLS);
MD2 and MD4 (disallowed in FIPS
mode)

Symmetric Keys (for HMAC,
AES CCM, AES CMAC, and
AES GMAC)

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 40 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Signing and Verification FIPS 186-4 RSA (RSASSA-PKCS1-
v1_5 and RSASSA-PSS) digital
signature generation and
verification with 2048 and 3072
modulus; supporting SHA-17,
SHA-256, SHA-384, and SHA-512
FIPS 186-4 ECDSA with the
following NIST curves: P-256, P-
384, P-521

Asymmetric RSA Public Keys
Asymmetric RSA Private Keys
Asymmetric ECDSA Public
keys
Asymmetric ECDSA Private
keys

Secret Agreement and Key
Derivation

KAS – SP 800-56A Diffie-Hellman
Key Agreement; Finite Field
Cryptography (FFC)
KAS – SP 800-56A EC Diffie-
Hellman Key Agreement
SP 800-108 Key Derivation
Function (KDF) CMAC-AES (128,
192, 256), HMAC (SHA1, SHA-
256, SHA-384, SHA-512)
SP 800-132 PBKDF
SP 800-135 IKEv1 and IKEv2 KDF
primitives
Legacy CAPI KDF (cannot be used
in FIPS mode)

DH Private and Public Values
ECDH Private and Public
Values

Show Status None None

Self-Tests See Section 10 Self-Tests for the
list of algorithms

None

Zeroization None All CSPs

7.15 Mapping of Services, Export Functions, and Invocations
The following table maps the services to their corresponding export functions and invocations.

Table 3

Service Export Functions Invocations

Power Up and Power Down Driver Entry
Driver Unload

This service is fully automatic.
The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed upon startup of this
module.

Algorithm Providers and
Properties

BCryptOpenAlgorithmProvider
BCryptCloseAlgorithmProvider
BCryptSetProperty
BCryptGetProperty

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is

7 SHA-1 is only acceptable for legacy signature verification.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 41 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCryptFreeBuffer executed whenever one of
these exported functions is
called.

Random Number Generation BcryptGenRandom
SystemPrng
EntropyRegisterSource
EntropyUnregisterSource
EntropyProvideData
EntropyPoolTriggerReseedForIum

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Key and Key-Pair Generation BCryptGenerateSymmetricKey
BCryptGenerateKeyPair
BCryptFinalizeKeyPair
BCryptDuplicateKey
BCryptDestroyKey

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Key Entry and Output BCryptImportKey
BCryptImportKeyPair
BCryptExportKey

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Encryption and Decryption BCryptEncrypt
BCryptDecrypt

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Hashing and Message
Authentication

BCryptCreateHash
BCryptHashData
BCryptDuplicateHash
BCryptFinishHash
BCryptDestroyHash
BCryptHash
BCryptCreateMultiHash
BCryptProcessMultiOperations

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Signing and Verification BCryptSignHash
BCryptVerifySignature

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 42 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Secret Agreement and Key
Derivation

BCryptSecretAgreement
BCryptDeriveKey
BCryptDestroySecret
BCryptKeyDerivation
BCryptDeriveKeyPBKDF2

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

Show Status All Exported Functions This service is fully automatic.
The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed upon completion of
an exported function.

Self-Tests Driver Entry This service is fully automatic.
The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed upon startup of this
module.

Zeroization BCryptDestroyKey
BCryptDestroySecret

The User / Cryptographic
Officer does not take any
actions to explicitly start this
service. This service is
executed whenever one of
these exported functions is
called.

7.16 Non-Approved Services
The following table lists other non-security relevant or non-approved APIs exported from the crypto

module.

Table 4

Function Name Description

BCryptDeriveKeyCapi Derives a key from a hash value. This function is provided
as a helper function to assist in migrating from legacy
Cryptography API (CAPI) to CNG.

SslDecryptPacket
SslEncryptPacket
SslExportKey
SslFreeObject
SslImportKey
SslLookupCipherLengths
SslLookupCipherSuiteInfo
SslOpenProvider

Supports Secure Sockets Layer (SSL) protocol functionality.
These functions are non-approved.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 43 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

SslIncrementProviderReferenceCount
SslDecrementProviderReferenceCount

8 Authentication
See Section 6.3 Operator Authentication.

9 Security Relevant Data Items
The Kernel Mode Cryptographic Primitives Library crypto module uses the following security relevant

data items.

Table 5

Security Relevant Data Item Description

Symmetric encryption/decryption keys Keys used for AES or Triple-DES encryption/decryption. Key
sizes for AES are 128, 192, and 256 bits, and key sizes for
Triple-DES are 192 and 128 bits.

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384,
and HMAC-SHA512

Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital signatures.
Curve sizes are P-256, P-384, and P-521.

Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures.
Curve sizes are P-256, P-384, and P-521.

Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures. Key
sizes are 2048 and 3072 bits. These keys can be produced
using RSA Key Generation.

Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures. Key
sizes are 2048 and 3072 bits. These keys can be produced
using RSA Key Generation.

AES-CTR DRBG Seed A 384 bit secret value maintained internal to the module
that provides the seed material for AES-CTR DRBG output

AES-CTR DRBG Entropy Input A secret value that is at least 256 bits and maintained
internal to the module that provides the entropy material
for AES-CTR DRBG output

AES-CTR DRBG V A 128 bit secret value maintained internal to the module
that provides the entropy material for AES-CTR DRBG
output

AES-CTR DRBG key A 256 bit secret value maintained internal to the module
that provides the entropy material for AES-CTR DRBG
output

DH Private and Public values Private and public values used for Diffie-Hellman key
establishment. Key sizes are 2048 to 4096 bits.

ECDH Private and Public values Private and public values used for EC Diffie-Hellman key
establishment. Curve sizes are P-256, P-384, and P-521.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 44 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

9.1 Access Control Policy
The Kernel Mode Cryptographic Primitives Library crypto module allows controlled access to the security

relevant data items contained within it. The following table defines the access that a service has to

each. The permissions are categorized as a set of four separate permissions: read (r), write (w), execute

(x), delete (d). If no permission is listed, the service has no access to the item. The User and

Cryptographic Officer roles have the same access to keys so roles are not distinguished in the table.

Table 6

Kernel Mode Cryptographic Primitives
Library crypto module

Service Access Policy

Sy
m

m
et

ri
c

en
cr

yp
ti

o
n

/d
ec

ry
p

ti
o

n
 k

ey
s

H
M

A
C

 k
ey

s

A
sy

m
m

et
ri

c
EC

D
SA

 P
u

b
lic

 k
ey

s

A
sy

m
m

et
ri

c
EC

D
SA

 P
ri

va
te

 k
ey

s

A
sy

m
m

et
ri

c
R

SA
 P

u
b

lic
 K

ey
s

A
sy

m
m

et
ri

c
R

SA
 P

ri
va

te
 K

ey
s

D
H

 P
u

b
lic

 a
n

d
 P

ri
va

te
 v

al
u

e
s

EC
D

H
 P

u
b

lic
 a

n
d

 P
ri

va
te

 v
al

u
es

A
ES

-C
TR

D

R
B

G

Se
ed

,
A

ES
-C

TR

D
R

B
G

En
tr

o
p

y
In

p
u

t,
 A

ES
-C

TR
 D

R
B

G
 V

, &
 A

ES
-

C
TR

 D
R

B
G

 k
ey

Power Up and Power Down

Algorithm Providers and Properties

Random Number Generation x

Key and Key-Pair Generation wd wd wd wd wd wd wd wd x

Key Entry and Output rw rw rw rw rw rw rw rw

Encryption and Decryption x

Hashing and Message Authentication wx

Signing and Verification x x x x x

Secret Agreement and Key Derivation x x x

Show Status

Self-Tests

Zeroization wd wd wd wd wd wd wd wd wd

9.2 Key Material

When Kernel Mode Cryptographic Primitives Library is loaded in the Windows 10 OEs Operating System

kernel, no keys exist within it. A kernel module is responsible for importing keys into Kernel Mode

Cryptographic Primitives Library or using Kernel Mode Cryptographic Primitives Library’s functions to

generate keys.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 45 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

9.3 Key Generation

Kernel Mode Cryptographic Primitives Library can create and use keys for the following algorithms: RSA,

DH, ECDH, ECDSA, RC2, RC4, DES, Triple-DES, AES, and HMAC. However, RC2, RC4, and DES cannot be

used in FIPS mode.

Random keys can be generated by calling the BCryptGenerateSymmetricKey() and

BCryptGenerateKeyPair() functions. Random data generated by the BCryptGenRandom() function is

provided to BCryptGenerateSymmetricKey() function to generate symmetric keys. DES, Triple-DES, AES,

RSA, ECDSA, DH, and ECDH keys and key-pairs are generated following the techniques given in SP 800-

56Ar2 (Section 5.8.1).

Keys generated while not operating in the FIPS mode of operation (as described in section 2) cannot be

used in FIPS mode, and vice versa.

9.4 Key Establishment
Kernel Mode Cryptographic Primitives Library can use FIPS approved Diffie-Hellman key agreement (DH),

Elliptic Curve Diffie-Hellman key agreement (ECDH), RSA key transport and manual methods to establish

keys. Alternatively, the module can also use Approved KDFs to derive key material from a specified

secret value or password.

Kernel Mode Cryptographic Primitives Library can use the following FIPS approved key derivation

functions (KDF) from the common secret that is established during the execution of DH and ECDH key

agreement algorithms:

 BCRYPT_KDF_SP80056A_CONCAT. This KDF supports the Concatenation KDF as specified in SP
800-56A (Section 5.8.1).

 BCRYPT_KDF_HASH. This KDF supports FIPS approved SP800-56A (Section 5.8), X9.63, and X9.42
key derivation.

 BCRYPT_KDF_HMAC. This KDF supports the IPsec IKEv1 key derivation that is non-Approved but
is an allowed legacy implementation in FIPS mode when used to establish keys for IKEv1 as per
scenario 4 of IG D.8.

Kernel Mode Cryptographic Primitives Library can use the following FIPS approved key derivation
functions (KDF) from a key handle created from a specified secret or password:

 BCRYPT_SP800108_CTR_HMAC_ALGORITHM. This KDF supports the counter-mode variant of
the KDF specified in SP 800-108 (Section 5.1) with HMAC as the underlying PRF.

 BCRYPT_SP80056A_CONCAT_ALGORITHM. This KDF supports the Concatenation KDF as
specified in SP 800-56Ar2 (Section 5.8.1).

 BCRYPT_PBKDF2_ALGORITHM. This KDF supports the Password Based Key Derivation Function
specified in SP 800-132 (Section 5.3).

 BCRYPT_CAPI_KDF_ALGORITHM. This KDF supports the proprietary KDF described at
https://msdn.microsoft.com/library/windows/desktop/aa379916.aspx
Note that this KDF cannot be used in FIPS mode.

https://msdn.microsoft.com/library/windows/desktop/aa379916.aspx

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 46 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

9.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)

There are two (2) options presented in NIST SP 800-132, pages 8 – 10, that are used to derive the Data

Protection Key (DPK) from the Master Key. With the Kernel Mode Cryptographic Primitives Library, it is

up to the caller to select the option to generate/protect the DPK. For example, DPAPI uses option

2a. Kernel Mode Cryptographic Primitives Library provides all the building blocks for the caller to select

the desired option.

The Kernel Mode Cryptographic Primitives Library supports the following HMAC hash functions as

parameters for PBKDF:

 SHA-1 HMAC

 SHA-256 HMAC

 SHA-384 HMAC

 SHA-512 HMAC

Keys derived from passwords, as shown in SP 800-132, may only be used in storage applications. In

order to run in a FIPS Approved manner, strong passwords must be used and they may only be used for

storage applications. The password/passphrase length is enforced by the caller of the PBKDF interfaces

at the time the password/passphrase is created and not by this cryptographic module. (This module is

not involved in the creation of any password/passphrase.)

For an example of usage, examine Boot Manager’s support for BitLocker® encrypted volumes. In this

case, for the password that is used in key derivation, 128 bits of entropy are generated from the system

DRBG, then converted into 40 digits (3.2 bits of entropy per digit), which are then broken into groups of

five digits that are each multiplied by 11 to create six digit groupings for parity/correctness checking on

user entry. This password has 128-bit security. The upper bound for the probability of having this

parameter guessed at random is 1/2128. This probability is not only based on the length of the password,

but also the difficulty of guessing it.

9.4.2 NIST SP 800-38F AES Key Wrapping

As outlined in FIPS 140-2 IG, D.2 and D.9, AES key wrapping serves as a form of key transport, which in

turn is a form of key establishment. This implementation of AES key wrapping is in accordance with NIST

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.

9.5 Key Entry and Output

Keys can be both exported and imported out of and into Kernel Mode Cryptographic Primitives Library

via BCryptExportKey(), BCryptImportKey(), and BCryptImportKeyPair() functions.

Symmetric key entry and output can also be done by exchanging keys using the recipient’s asymmetric

public key via BCryptSecretAgreement() and BCryptDeriveKey() functions.

Exporting the RSA private key by supplying a blob type of BCRYPT_PRIVATE_KEY_BLOB,

BCRYPT_RSAFULLPRIVATE_BLOB, or BCRYPT_RSAPRIVATE_BLOB to BCryptExportKey() is not allowed in

FIPS mode.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 47 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

9.6 Key Storage

Kernel Mode Cryptographic Primitives Library does not provide persistent storage of keys.

9.7 Key Archival

Kernel Mode Cryptographic Primitives Library does not directly archive cryptographic keys. A user may

choose to export a cryptographic key (cf. “Key Entry and Output” above), but management of the secure

archival of that key is the responsibility of the user. All key copies inside Kernel Mode Cryptographic

Primitives Library are destroyed and their memory location zeroized after used. It is the caller’s

responsibility to maintain the security of Triple DES and HMAC keys when the keys are outside Kernel

Mode Cryptographic Primitives Library.

9.8 Key Zeroization

All keys are destroyed and their memory location zeroized when the operator calls BCryptDestroyKey()

or BCryptDestroySecret() on that key handle.

10 Self-Tests

10.1 Power-On Self-Tests
Kernel Mode Cryptographic Primitives Library automatically performs the following power-on (startup)

self-tests upon loading of the CNG.SYS driver through its default entry point (DriverEntry).

 HMAC (SHA-1, SHA-256, and SHA-512) Known Answer Tests

 Triple-DES encrypt/decrypt ECB Known Answer Tests

 AES-128 encrypt/decrypt ECB Known Answer Tests

 AES-128 encrypt/decrypt CCM Known Answer Tests

 AES-128 encrypt/decrypt CBC Known Answer Tests

 AES-128 CMAC Known Answer Test

 AES-128 encrypt/decrypt GCM Known Answer Tests

 XTS-AES encrypt/decrypt Known Answer Tests

 RSA sign/verify Known Answer Tests using RSA_SHA256_PKCS1 signature generation and
verification

 ECDSA sign/verify Known Answer Tests on P256 curve

 DH secret agreement Known Answer Test with 2048-bit key

 ECDH secret agreement Known Answer Test on P256 curve

 SP 800-90A AES-256 counter mode DRBG Known Answer Tests (instantiate, generate and
reseed)

 SP 800-108 KDF Known Answer Test

 SP 800-132 PBKDF Known Answer Test

In all cases for any failure of a power-on (startup) self-test, the Kernel Mode Cryptographic Primitives

Library module will not load and status will be returned. The only way to recover from the failure of a

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 48 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

power-on (startup) self-test is for the kernel to attempt to invoke DriverEntry, which will rerun the self-

tests, and will only succeed if the self-tests pass.

10.2 Conditional Self-Tests
Kernel Mode Cryptographic Primitives Library performs pair-wise consistency checks upon each

invocation of RSA, ECDH, and ECDSA key-pair generation and import as defined in FIPS 140-2. A

Continuous Random Number Generator Test (CRNGT) is used for the random number generators and

the Deterministic Random Bit Generator (DRBG) of this cryptographic module, which includes the SP

800-90A AES-256 CTR DRBG. All approved and non-approved DRBGs have a CRNGT. If the conditional

self-test fails, the module will not load and status will be returned. If the status is not STATUS_SUCCESS,

then that is the indicator a conditional self-test failed.

 CRNGTs for SP 800-90A AES-CTR DRBG and non-Approved NDRNG (entropy pool)

 Pairwise consistency test for RSA

 Pairwise consistency test for ECDSA key generation

 Pairwise consistency tests for Diffie-Hellman and EC Diffie-Hellman prime value generation

 Assurances for SP 800-56A (According to sections 5.5.2, 5.6.2, and 5.6.3 of the standard)

 DRBG health test for SP 800-90A AES-CTR

11 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the

overall operating system secure installation, configuration, and startup procedures for the Windows 10

OEs. The various methods of delivery and installation for each product are listed in the following table.

Table 7

Product Delivery and Installation Method

Windows 10, Windows 10 Pro, Windows

10 Enterprise, Windows Enterprise LTSB,

Windows Server 2016 Standard, Windows

Server 2016 Datacenter

 Pre-installed on the computer by OEM

 Download that updates to Windows 10

 Enterprise IT deployment

Surface Book, Surface Pro 4, Surface Pro 3,

Surface 3, Lumia 950, Windows Storage

Server 2016

 Pre-installed by the OEM (Microsoft)

After the operating system has been installed, it must be configured by enabling the "System

cryptography: Use FIPS compliant algorithms for encryption, hashing, and signing" policy setting

followed by restarting the system. This procedure is all the crypto officer and user behavior necessary

for the secure operation of this cryptographic module.

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 49 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

An inspection of authenticity of the physical medium can be made by following the guidance at this

Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows 10 OEs must be verified to match the version that was validated. See

Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows

Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the

metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL

ensures that the client is communicating with the real server and so prevents a spoof server from

sending the client harmful requests. The version and digital signature of new cryptographic module

releases must be verified to match the version that was validated. See Appendix A for details on how to

do this.

12 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Table 8

Algorithm Protected
Against

Mitigation Comments

SHA1 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

SHA2 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

Triple-DES Timing
Analysis
Attack

Constant Time Implementation

AES Timing
Analysis
Attack

Constant Time Implementation

https://www.microsoft.com/en-us/howtotell/default.aspx

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 50 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 Cache Attack Memory Access pattern is
independent of any
confidential data

Protected Against Cache
attacks only when used with
AES NI

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 51 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Table 9

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

14 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

https://www.microsoft.com/en-us/windows

For more information about FIPS 140 validations of Microsoft products, please see:

https://technet.microsoft.com/en-us/library/cc750357.aspx

https://www.microsoft.com/en-us/windows
https://technet.microsoft.com/en-us/library/cc750357.aspx

Kernel Mode Cryptographic Primitives Library

© 2019 Microsoft. All Rights Reserved Page 52 of 52
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

15 Appendix A – How to Verify Windows Versions and Digital Signatures

15.1 How to Verify Windows Versions
The installed version of Windows 10 OEs must be verified to match the version that was validated using

the following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver”.
4. The version information will be displayed in a format like this:

Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

15.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital

signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true, then the digital signature has been verified.

